
CDF Simulation Framework

Developer’s Guide

Draft version 0.1

Chris Green, Jim Kowalkowsi, and Marc Paterno

June 7, 2000

Abstract

This document is a guide to the use of the CDF simulation framework.
It explains what implementers of the simulation must write in order to
support a new detector, or to extend the support of an existing detector.

1 Purpose of this Document

This document is a guide to the use of the CDF simulation framework. It
explains what implementers of the simulation must write in order to support a
new detector, or to extend the support of an existing detector.

We assume the reader is already familiar with the CDF geometry system,
specifically with the concepts represented by the classes CdfDetectornode, CdfDe-
tectorElement, CdfTangible, CdfPhysicalVolume and CdfLogicalVolume. Please
see the documentation of the CDF geometry system for a description of these
classes.1

2 Purpose of the Simulation Framework

The simulation framework is a set of classes and class templates that support
the creation of a simulation program. The framework is designed for flexibil-
ity, extensibility, and efficiency. It is also designed with the aim of decreasing
the burden, to the greatest extent possible, placed on the developers of the
individual detector groups.

To write the simulation for a new detector (or a new simulation for an exist-
ing detector), one must provide four components that plug into the simulation:
the bit that does the work (a digitizer), the bit that configures the bit that does
the work (a menu), the bit that holds the geometric information needed by the

1Some additional documentation, including the documentation of the review of the original
simulation design and two talks presented on the new geometry system and the new simulation
framework are available at http://cdspecialproj.fnal.gov/cdf/simulation/simulation.htm.

1

http://cdspecialproj.fnal.gov/cdf/simulation/simulation.htm


bit that does the work (a detector element), and the bit that holds the data
put out by the bit that does the work (an event data object). The simulation
framework allows these pieces to plug into the existing system, and handles the
messy details of their interaction.

To achieve these goals, the framework design is based upon a mixture of
generic programming and object oriented principles. This means the framework
is largely template-based, using parametric polymorphism, rather than solely
being inheritance-based, using dynamic polymorphism. The mix of generic pro-
gramming and object oriented techniques, rather than a pure object oriented
solution, allows the framework to be more easily extensible, while retaining as
much time efficiency as possible.

The (perhaps unfortunate) side effect is that developers must gain a passing
familiarity with some of the ideas of generic programming.

3 Running a Simulation Executable

3.1 Required Elements

The simulation framework expects to be run in the environment of CDF AC++
application framework. In addition to the list of (standard) CDF required mod-
ules, the simulation framework requires the modules SimInitManager (which
initializes GEANT3) and SimulationControl (which actually contains the top-
level simulation framework object). In addition, the COT detector node must
be turned on in GeometryManager.2

3.2 Configuring the Simulation Framework

There may be many configurable components in a given simulation executable.
The list includes, among others, any event generators, the CDF geometry, and
GEANT3. The documentation of these software systems are available else-
where; here, we describe only the configuration of the simulation framework
itself.

For the simulation framework, there are two different levels of configuration
information the user can control. The first level of configuration allows the user
to tell the system what parts of the detector are to be digitized, what kinds of
digitizers should be used for each part of the detector, and what data will be put
into the EventRecord for each simulated event. This configuration is controlled
by the add function of the SimulationControlMod talk-to interface. The
format of the add command is shown in Figure 1. In this command, detector-
element-name is the name of the detector element class (a subclass of CdfDetec-
torElement), digitizer-name is the name of the digitizer class (see Section 5.6)
and group-name is the name denoting the collection of digitizers that contribute
to the same “event data” object (see Section 5.2).

2Per CDF software policy, it is also required that the geometry for any detector necessary
to the reading of data must also be turned on in GeometryManager. At the time of this

2



add detector-element-name digitizer-name group-name

Figure 1: The format of the SimulationControlMod add command.

The second level of configuration controls the values of whatever user-settable
parameters (if any) are used by a given digitizer class. For example, a digitizer
class for the silicon system might have a zero-suppression threshold that can
be varied; this configuration would be controllable by the user via an AC++
menu. Each digitizer class (described in Section 5.6) must have exactly one such
menu, but the details of what the menu contains is left to the discretion of the
designer of the digitizer class.

4 Classes

The CDF simulation framework consists of an interacting set of classes. The
top level of control for the simulation framework is the AC++ module Sim-
ulationControl. SimulationControl is responsible for handling the interactions
with the AC++ framework, including the establishment of menus and the event
loop. SimulationControl is also responsible for the communication of event data
between GEANT3 and the simulation framework.

An instance of the class SimulationControl contains an instance of the class
SimulationManager, which performs the task of managing the objects that per-
form the digitization of hits and the filling of “event data” objects – that is,
those objects which are part of the CDF Event Data Model (EDM). During the
particle stepping process, it is SimulationManager that handles the callbacks
from GEANT3, and which performs the lookup to assure that the digitizer for
the correct CdfDetectorElement is invoked for each step.

The SimulationManager does its job by managing a collection of SimEle-
ments. Each SimElement object encapsulates a single digitizer, a pointer to the
menu used to configure the digitizer, and a pointer to the CdfDetectorElement
with which the digitizer is associated.

The digitizer classes are the elementary units that perform the work of dig-
itization. The SimulationManager controls the order in which their functions
are called, during all the phases of simulation: configuration of the framework,
preparation for an event, stepping of particles through the detector, and creation
of the EDM objects to represent, e.g., the detector output.

The simulation framework allows new digitizers to be added to the system
with a minimum impact upon the rest of the working system. This is achieve
by virtue of the fact that the SimulationManager the SimElements, and most
other aspects of the simulation framework are in fact class templates. To explain
in more detail the functioning of the framework, we need to present one of the
major inventions of generic programming, called the concept. This is the topic
of the following section.

writing, this list includes the Silicon, COT and Calorimeter detectors.

3



5 Concepts

An important feature of any class template or function template is the set of
types (basic types or class types) which can be used in place of the formal
template parameters. One way to describe this set of types is by listing the
expressions and statements that must be legal for these types (and also, of
course, what those statements or expressions must mean). The set of types,
or the specification of the legal statements and expressions, is said to define
a concept. A type is said to be a model of a concept if that type supports
all the expressions and statements defined by the concept.3 A concept Refined
is said to be a refinement of another concept Basic if Refined provides all the
functionality of Basic and possibly additional functionality as well. Refinement
is, in a limited sense, the generic programming equivalence of inheritance.

In addition to required valid expressions, a concept may also define a set of
required associated types. Usually, this requirement is expressed by requiring
the definition of one or more typedefs.

In the following sections, we introduce the concepts necessary to describe
the various elements of the simulation framework. We use the typographical
convention that concept names are presented in a sans-serif font, e.g. Digitizable.
For those concepts which have required types and required legal expressions, we
provide tables which list the types and expressions. Note that a return type
given as “must be safe to ignore” is allowed to be void, or any basic or class
type which may be ignored upon return without introducing a resource leak. A
bare pointer to newly allocated memory which is to be managed through that
pointer is explicitly not safe to ignore.

5.1 Basic Concepts

There are a few concepts that are very general, presented here to allow the de-
scriptions of the concepts specific to the simulation framework to be more brief.
This material is presented in much more detail in the references in footnote 3.

A type is DefaultConstructible if it is possible to create an object without
initializing the object to any particular value. Almost all built-in C++ types
are models of DefaultConstructible. For a class type to be a model of DefaultCon-
structible, it must have a default constructor – one which takes no arguments,
or which has default values provided for all arguments.

A type is Assignable if it is possible to copy objects of that type and to assign
values to variables of that type. Almost all built-in C++ types are models of
Assignable. For a class type to be a model of Assignable, it must have a copy
constructor and an assignment operator. Remember that const objects may not
be assigned to, so that const int is not a model of Assignable. If a type is both

3An excellent description of these basic elements of generic programming can be found
online, at http://www.sgi.com/Technology/STL/stl introduction.html. An expanded version
of the material available at this site may be found in the book Generic Programming and
the STL, by Matthew H. Austern.

4

http://www.sgi.com/Technology/STL/stl_introduction.html


Assignable and EqualityComparable, then a copy of that type should compare
equal to the original.

A type is EqualityComparable if it can be compared for equality and inequal-
ity, that is, if operator== and operator!= are defined for that type. The
equality test operator must satisfy identity, reflexivity, symmetry, and transi-
tivity; the inequality test operator must be the logical negation of the equality
test.

5.2 The Concept Eventdata

The output of the simulation is information in the form of objects of the CDF
EDM, that is, instances of subclasses of StorableObject. In order to allow digi-
tizers to create as many (or as few) StorableObjects as necessary, the simulation
framework makes use of the concept Eventdata. A class that is a model of
Eventdata is used to hold one or more StorableObjects, and to put those Stora-
bleObjects into the EventRecord at the appropriate time.

Note that a class that is a model of Eventdata is not itself a StorableObject ;
it merely carries them. It is responsible for ownership of the StorableObjects
until the moment when they are inserted into the EventRecord, at which time
the EventRecord takes over ownership.

5.2.1 Eventdata Interface

The concept Eventdata is a refinement of DefaultConstructible. Table 1 presents
the additional expressions which must be valid for any type that is a model of
the concept Eventdata.

Name Expression Return type
Store output x.appendToEvent(pER) must be safe to ignore

Table 1: Valid expressions for the concept Eventdata. It is assumed that class X
is a model of Eventdata, and that x is an instance of class X. It is assumed pER
is of type EventRecord*.

5.2.2 Purpose of Eventdata member functions

Table 1 provides a list of the member functions (legal expressions) required of
an Eventdata class. The purpose of these functions is described below.

• appendToEvent(EventRecord* pER)

This function must insert the StorableObjects currently owned by the
Eventdata object into the given EventRecord. Once the StorableObjects
are inserted into the EventRecord, ownership of the StorableObjects is as-
sumed by the EventRecord. One must be certain, therefore, that Eventdata

5



classes are written to correctly hand off ownership. The class ToyEvent-
data (in the package SimulationExample) shows a simple design that
ensures correct ownership of the StorableObjects at all times.

5.3 The concept Detectorelement

Each digitizer is responsible for digitizing hits in a single section of the detec-
tor. The section of the detector which is associated with a single digitizer is
represented in the CDF geometry system by a subclass of CdfDetectorElement.
A class that is a model of Detectorelement must be a subclass of CdfDetector-
Element. The requirements for a subclass of CdfDetectorElement are described
in the documentation for the CDF geometry system.

5.4 The concept Configurationdata

Many (perhaps most) interesting digitizers need to have one or more parameters
that can be configured by the user at run time. To support this ability, each dig-
itizer in the simulation framework is associated with a Configurationdata object.
For a class to be a model of Configurationdata, it must be DefaultConstructible,
and it must inherit from the class APPMenu. One instance of this class is
shared among all instances of the digitizer class with which it is associated, as
determined by the use of the configuration menu described in Section 3.2, by
the values of detector-element-type and digitizer-name.

It is intended that each digitizer class hold a pointer to its Configurationdata
object. The digitizer class does not own the pointed-to Configurationdata ob-
ject. It can, however, refer to it through the pointer. Specifically, it is expected
that the digitizer will access any configurable parameters through this pointer.
The class template ToyDigitizer and ToyConfiguration (in the package Simu-
lationExample) provide an example of this usage.

5.5 The concept Stepdata

The concept Stepdata defines what it required for class to represent the (sim-
ulated) data generated by a physics simulation engine, e.g. GEANT3. The
simulation framework is based on a model in which the physics simulation en-
gine tracks particles by taking discrete steps through the detector volume. The
concept Stepdata represents the information provided by the physics simulation
engine for the current step.

Users of the simulation framework (including authors of digitizers) do not
generally need to provide their own Stepdata class. The simulation framework
provides the class G3StepData for use with GEANT3; when CDF requires the
use of an additional physics simulation (e.g. GEANT4), the authors of the
simulation framework will provide the appropriate Stepdata class to support it.

Table 2 lists the associated types for the concept Stepdata. The type Physi-
calVolumeID is a class that can be used to identify the finest level of granularity
known to the detector simulation. The simulation framework provides the class

6

http://purdue-cdf.fnal.gov/CdfCode/source/SimulationBase
http://purdue-cdf.fnal.gov/CdfCode/source/SimulationBase
http://purdue-cdf.fnal.gov/CdfCode/source/SimulationBase


G3::PhysicalVolumeID for use with the class G3StepData. A class that is a
model of Stepdata must have a member function location() const, which
returns a PhysicalVolumeID instance that denotes the volume in which the
current step is to be deposited.

Type Description
PhysicalVolumeID label for a volume element

Table 2: The types associated with the concept Stepdata.

5.6 The concept Digitizable

The concept Digitizable defines what it means for a class to be a digitizer in
the CDF simulation system. Digitizers do the actual work of converting the
output of the physics simulation engine (e.g. GEANT3 hits) to the C++
representation of signals in the detector.

A single instance of a digitizer class is used to perform digitization in the re-
gion of the detector described by a single Detectorelement object. Each digitizer
is configured by a single Configurationdata object. Each digitizer contributes its
accumulated output to a single Eventdata object; note that many digitizers of
the same type can contribute to the same Eventdata instance.

5.6.1 Digitizable Interface

Digitizable is a refinement of DefaultConstructible and Assignable. Table 3 lists
the types associated with the concept Digitizable, and the typedefs required
to define these types. Table 4 lists the expressions which (in addition to those
required by DefaultConstructible and Assignable) must be valid for any type that
is a model of Digitizable.

Type Description
configuration data type A model of Configurationdata
detector element type A model of Detectorelement
event data type A model of Eventdata
step data type A model of Stepdata

Table 3: The types associated with the concept Digitizable.

5.6.2 Purpose of Digitizer member functions

Table 4 provides a list of the member functions (legal expressions) required of
a Digitizable class. The purposes of these functions is described below.

• digitizeHit(step data type& sd, const detector element type* de,
const CdfTangible* t)

7



Name Expression Return type
invoke digitizer x.digitizeHit(sd,de,t) convertible to bool
clear digitizer x.clear() must be safe to ignore
complete this event x.complete() convertible to bool
populate Eventdata x.populate(ed) convertible to bool
configure digitizer x.configure(cd) convertible to bool
(re)set Eventdata x.acceptEventdata(ed) must be safe to ignore

Table 4: Valid expressions for the concept Digitizable. It is assumed that X is a
model of Digitizable, and x is an instance of class X. In addition, it is assumed
sd is of type step data type, de is of type const detector element type*, t
is of type const CdfTangible*, ed is of type event data type*, and cd is of
type configuration data type*.

This function performs the real work of digitization. It is called for each
step taken by each particle in the simulation. It is given a reference to the
simulation engine’s current state (sd), a pointer to the detector element
in which this step occurred (de), and a pointer to the CdfTangible (t)
which the current step occurred (this is the most specific geometric element
known to the simulation geometry).

• clear()

This function clears accumulated information from the previous event,
preparing the digitizer for the start of the next event. Use this to clear
any information cached between events.

• complete()

This function does end-of-event processing; it is called after the stepping
of particles is complete, but before the collected event data is put into the
event. Return true on success, and false on failure.

• populate(event data type* ed)

This function populates the given event data object (ed) with the infor-
mation accumulated during the stepping process. Return true on success,
and false on failure.

• configure(configuration data type* cd)

This function gives the configuration data to be used by this digitizer.
The digitizer should just cache this pointer.

• acceptEventdata(event data type* ed)

This function is called at the beginning of a new event. If the digitizer
wants to accumulate hits directly in the event data type object, this is
the pointer to the event data type object it should use. This function
should cache the given pointer, if it is needed. It must not copy the
pointed-to object.

8



6 How the System Processes and Event

The entire simulation framework (all the digitizers, configuration menus, etc.
used in a simulation executable) is contained in a single instance of the class
template SimulationManager. The class SimulationControl makes use of a Sim-
ulationManager, with template parameter G3StepData.

Upon program startup, SimulationControl is configured using its menus. For
a description of this process, see the documentation for SimulationControl. We
explain here the process of digitizing a single event. This work is all done in the
function SimulationManager::event.

Processing an event consists of the following steps:

1. All the digitizers are cleared (by calling each one’s clear method).

2. All the digitizers are prepared for the next event (by calling each ones’s
acceptEventdata method).

3. GEANT3is invoked, to process the input particles for this event. This
initiates the stepping process.

On each step, the appropriate digitizer’s digitizeHit functions is called.

4. After GEANT3 has finished stepping for this event, each digitizer’s
complete function is called.

5. Finally, the accumulated StorableObjects are inserted into the EventRec-
ord, by calling appendToEvent on each Eventdata object.

The simulation framework itself handles the coordination of these steps.
The interested reader is directly to review the documentation of the simulation
framework classes, which is in the header files in the package SimulationBase.

7 Implementation Suggestions

It is most convenient if the StorableObjects stored in the Eventdata object can be
“accumulated”; that is, if they can be added to on a hit-by-hit bases. Remember
that it is only after a StorableObject is stored in the EventRecord that the Stor-
ableObject is unmodifiable; before it is added, there is no prohibition about
modifying an existing StorableObject.

Remember to check the charge of the current particle before recording the
energy deposited by that particle in the current step. Unlike the previous version
of the CDF simulation, the current simulation framework does not filter out
neutral particles for some subdetectors. This task is left to the level at which
the decision can be correctly made – the level of the individual digitizers.

The tables in Section 5.6 list only those functions that are required for the
concept Digitizable. In most real digitizers, there may be other functions as well,
as may be needed in order to produce a digitizer that is both easily maintainable
and efficient.

9



A A Sample Digitizer

Several sample digitizers are contained in the CVS package SimulationExam-
ple. They demonstrate the minimum interface required for the functioning of
the simulation framework. They are presented as instantiations of a class tem-
plate only for convenience; the simulation framework does not require any such
templating.

10

http://purdue-cdf.fnal.gov/CdfCode/source/SimulationBase
http://purdue-cdf.fnal.gov/CdfCode/source/SimulationBase

	Purpose of this Document
	Purpose of the Simulation Framework
	Running a Simulation Executable
	Required Elements
	Configuring the Simulation Framework

	Classes
	Concepts 
	Basic Concepts
	The Concept Eventdata
	Eventdata Interface
	Purpose of Eventdata member functions

	The concept Detectorelement
	The concept Configurationdata
	The concept Stepdata
	The concept Digitizable
	Digitizable Interface
	Purpose of Digitizer member functions


	How the System Processes and Event
	Implementation Suggestions
	A Sample Digitizer

